
Exercises in differentiation

1. Find the gradient of the secant of the curve y = x3
− 3x2 + x + 2 passing

through the points A = (xA, yA) and B = (xB, yB), knowing that xA = 1 and
yB = 5.

2. Find the average rate of change from the point A to the point B.

(a)

A

B

0 x

y

1 2 8

1

3

5

(b)

y = 0.25x2 + 1

A

B

0 x

y

1 3

1

(c) y = −2x2 +
√

x, xA = 1, xB = 2;
(d) g(t) = 2t−1

√

t2+1
, tA = −1, tB = 1.

3. Find the gradient of the secant of the curve y = x3
− 3x2 + x + 2 passing

through the points A = (xA, yA) and B = (xB, yB), knowing that xA = 1 and
yB = 5.

4. Compute the average rate of change of the function f (x) = x3
−2x
x from some

x0 to x0 + h, where h , 0. Use a limit argument to find d f
dx (x0).

5. Find the derivatives of the following functions at the points given:
(a) f (x) = 3x2 + 5x − 8, x0 = −2;
(b) g(x) = 1

x2 + 2, x0 = 1;

(c) y(x) =
√

x + 3
√

x, x0 = 64;

(d) x(t) = 5 + t2
−1/t
t , t0 = 3.2;

(e) u(s) = 1 + s + s2 + s3, s0 = −1;
(f) p(q) = (100 − 3q2)/q, q0 = 8;
(g) y(a) = a2

− 3a + 2, a1 = 1, a2 = 1.5, a3 = 2;
(h) x(t) = (t − 3)2, t1 = −3, t2 = 0, t3 = 3;
(i) f (x) = 3 4

√
x, x1 = 2.8, x2 = 100, x3 = 0.023;

(j) γ(p) = (p2 + 1)(p − 1)2, p1 = 1, p2 = 10, p3 = 100;
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(k) s(t) = t10
−

7
t14 + 5

√
7, t0 = 1;

(l) x(y) = y3
−y

y2 , y0 = −1;

(m) f (u) =
√

u + 3
√

u − 5
√

u, u0 = 3.2;

(n) v(z) = (z−1)2

z2 , z0 = 1;

(o) g(x) =
√

x+1
√

x
, x0 = 8;

(p) y(x) = (x2 + x + 1)(x − 1) − x3, x0 = 2007.

6. Differentiate the following functions:
(i) h(y) = y100

− 1/y100;

(ii) α(t) = t − t3

6 +
t5

120 −
t7

5040 ;

(iii) φ(r) = 4
√

r + 1
r4 + 4;

(iv) a(u) = 1
2 (u2
− u−2;

(v) x(y) = y2(y−1)
3y3 ;

(vi) M(x) = 1
√

x
(
√

x + x + x2) − 1
x (x + x

√
x + x2.5);

(vii) f (x) = −2x
√

x;
(viii) f (x) = 3

x2 ;

(ix) f (x) = − 8
x8 ;

(x) f (x) = 3x2√x;

(xi) x(t) = 3t2
√

t3;
(xii) p(q) = − qx

3
√

q2
;

(xiii) f (x) = x − x3

6 + x5120;
(xiv) f (x) = 1 + x2 + x4;

(xv) m(l) = l
√

l + 1/
√

l;
(xvi) q(p) = 200 + 500

p ;

(xvii) y(θ) = (θ + 1)(θ − 1);
(xviii) p(τ) = (τ2

− 1)(τ − 3);
(xix) f (x) = 5;
(xx) f (x) = 3

x2 ;
(xxi) f (x) = −3;

(xxii) f (x) = 2πx;

(xxiii) g(y) = y2
√

2;
(xxiv) h(k) = 2

√
3k

;

(xxv) f (x) = x3 + x2;
(xxvi) f (x) = 3x − 2

x ;

(xxvii) f (x) = x3
−

1
x3 ;

(xxviii) g(y) = 4y2 + 5y5
−

2
y2 ;

(xxix) x(t) = t2 + 4t + 4;
(xxx) s(t) = (t + 2)2.
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7. Find the equation of the tangent to the graph of f (x) at x0.
(a) f (x) = x2 + 2x + 3, x0 = −1;
(b) f (x) = 1

3 [x(
√

x − 1) − x3], x0 = 4;

(c) f (x) =
x3
−

1
√

x
+2

√
x

, x0 = 3.1.

8. A particle is moving along the x axis in such a way that its position (in cm)
after t seconds is given by the formula x(t) = 3 + 2t − 1

2 t2.
(a) Find the initial position of the particle (i.e., the position in the moment

t = 0) and its position after 3 s.
(b) At which moment will the particle reach the origin of the coordinate

system?
(c) Find the formula for the velocity v after t seconds. [Hint: differenti-

ate x(t).]
(d) What is the initial velocity? What is the velocity after 3 s? Does your

result make sense?
(e) Prove that the motion is uniformly retarded, i.e., the acceleration is

negative and constant.
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