Derivatives in a nutshell

The derivative of a function of the form $f(x)=a x^{p}$ is the function $f^{\prime}(x)=p a x^{p-1}$. Example: if $f(x)=3 x^{4}$, then $a=3, p=4$, so $f^{\prime}(x)=4 \cdot 3 x^{4-1}=12 x^{3}$. Notice that p may be zero (like in $f(x)=5$); it can also be a negative number (like in $f(x)=\frac{3}{x^{2}}=3 x^{-2}$), a fraction (like in $f(x)=-2 x \sqrt{x}=-2 x^{\frac{3}{2}}$), or even both (like in $\left.f(x)=\frac{7}{\sqrt[3]{x^{2}}}=7 x^{-\frac{2}{3}}\right)$.

The process of finding the derivative of a function is called differentiation.
The derivative of the sum of two (or more) functions is the sum of their derivatives (and likewise for difference of functions). Examples: (i) if $f(x)=2 x^{3}+3 x^{2}$, then we have $\left(2 x^{3}\right)^{\prime}=6 x^{2}$ and $\left(3 x^{2}\right)^{\prime}=6 x$, so $f^{\prime}(x)=6 x^{2}+6 x$. (ii) If $f(x)=x-\sqrt{x}$, then we have $x^{\prime}=1$ and $(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}$, so $f^{\prime}(x)=1-\frac{1}{2 \sqrt{x}}$.

Knowing how to find the derivative function of $f(x)$, you can also compute the derivative of the function $f(x)$ at some point x_{0}, i.e., the value $f^{\prime}\left(x_{0}\right)$. Example: in order to find the derivative of the function $f(x)=7 x^{2}+2 \sqrt{x}$ at the point $x_{0}=2$, we first compute $f^{\prime}(x)=14 x+1 / \sqrt{x}$ and then substitute 2 for x, obtaining $f^{\prime}(2)=$ $14 \cdot 2+1 / \sqrt{2} \approx 28.7$.

Since the derivative of a function $f(x)$ with respect to x (i.e., treating x-as usually-as the independent variable) measures the (instantaneous) rate of change of $f(x)$ w.r.t. x, it can be applied to, e.g., physics. For example, if $x(t)$ is the displacement function, then $v(t)=x^{\prime}(t)$ is velocity and $a(t)=v^{\prime}(t)$ is in turn acceleration.

To be continued. . .

