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Abstract. We present a fixed point theorem for a sum of two
convex-valued multifunctions acting on a weakly compact, hyper-
convex subset of a normed space. The theorem is a multivalued
version of a result of D. Bugajewski.

1. Introduction

In [1, s. 1458, Theorem 2], D. Bugajewski proved the following
Krasnoselskii-type theorem in a hyperconvex setting.

Theorem 1. Let K be a bounded hyperconvex subset of a normed space
(X, ‖·‖) such that λK ⊂ K for every λ ∈ (0, 1]. Assume that

(1) f1 : K → X is nonexpansive;
(2) f2 : K → X is completely continuous ;
(3) f1(x) + f2(y) ∈ K for any x, y ∈ K;
(4) every sequence (xn) such that xn ∈ K for n ∈ N and

lim
n→∞

(
xn − f(xn)

)
= 0,

where f := f1 + f2, has a limit point.

Then, f has a fixed point.

Recall that the assumption that λH ⊂ H can be released, as it was
shown in [2].

Recently, M. Özdemir and S. Akbulut published the paper [3] with
a multivalued version of Bugajewski’s theorem. Unfortunately, their
proof contains some errors. We will state a slightly different version of
this theorem and then discuss the errors in [3].

2. Preliminaries

Let X be a metric space. By BdX we denote the family of nonempty,
bounded and closed subsets of X and by KompX the set of nonempty
compact subsets of X.
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In what follows, we will use the symbol dX for a metric in the space X
and HX for the Hausdorff metric in the hyperspace BdX; we will
write d and H if the underlying space is obvious from the context.

By A′ we will denote the complement of the subset A of some
space X, i.e., the set X \ A.

Definition 1. We call a mapping f : X → Y between metric spaces
nonexpansive, if d(f(x), f(y)) ≤ d(x, y) for each x, y ∈ X.

Definition 2. Let A be any subset of a metric space X. The Kura-
towski measure of noncompactness of the set A, denoted by α(A), is
the greatest lower bound of the numbers ε > 0 such that A can be cov-
ered by a finite family of sets of diameter not greater than ε. (We put
α(A) = +∞ for unbounded sets.) A mapping f : X → Y between met-
ric spaces is called α-condensing if α(f(A)) ≤ α(A) for each nonempty
A ⊂ X and α(f(A)) < α(A) provided that α(A) > 0.
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